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SUMMARY

Atmospheres and oceans are mostly incompressible and turbulent. The experience of the meteorological
community with modelling such �ows is based primarily on centred in time and space (CTS) methods.
Our experience applying non-oscillatory forward in time methods (NFT) to a range of �ows has revealed
some unexpected bene�ts speci�cally in the area of modelling geophysical turbulence where broad span
of scales, density strati�cation, planetary rotation, inhomogeneity of the lower boundary, etc., make
explicit modelling of subgrid-scale motions particularly challenging. It turns out that in the absence
or insu�ciency of a proper subgrid-scale model, NFT methods supply their own, implicit, turbulence
models that are quite e�ective in assuring quality simulations of high-Reynolds number �ows. Since
such simulations abandon rigorous notion of the large-eddy simulation approach, and merely aim at
computing explicitly large coherent eddies resolvable on the grid, they are referred to as very-large-
eddy simulations (VLES). In this paper we will describe advantages of the NFT approach and illustrate
them with an example of gravity-wave-breaking induced turbulence in a deep atmosphere. On the
philosophical side, we challenge a common misconception that NFT methods are overly di�usive and
therefore inadequate for high Reynolds number �ow simulations. Copyright ? 2002 John Wiley &
Sons, Ltd.

KEY WORDS: geophysical turbulence; large eddy simulation; �nite di�erence methods for �uids;
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1. INTRODUCTION

Geophysical �uids such as atmospheres and oceans are characterized by high Reynolds number
and low Mach number. This indicates that, to �rst approximation, they are incompressible
and turbulent. As in engineering �ows, turbulence in atmospheres and oceans is generated
by heating and boundary stresses. E�ects uncommon in engineering applications are due to
planetary rotation and density=temperature strati�cation. Rotating strati�ed �uids support a
variety of inertio-gravity and planetary waves. When the amplitude of the waves becomes
comparable to their wavelengths, the waves break—generating a localized burst of turbulence.
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The familiar pictures of white water in a mountain stream or of breaking surf on a beach
are not far removed from phenomena which occur internally in geophysical �ows of all
scales.
The large-eddy simulation (LES) approach has a proven record in the research of turbu-

lent atmospheric and oceanic �ows. Typically, LES is understood as a numerical integration
of Navier–Stokes’ equations �ltered appropriately such as to compute explicitly all scales
of motion larger than some multiplicity of the grid interval �X (e.g. 2�X [7]), whereas
unresolved scales are modelled based on universal properties of fully developed turbulence;
cf. Reference [27]. The intent behind LES is to account for (viz. parameterize) the subgrid-
scale (SGS) motions below the available resolution of the numerical model at hand or, in
other words, to account for a net e�ect of smallscales on those resolved on the grid. The over-
all idea of LES is simple and elegant, yet often di�cult to realize e�ectively in applications.
The literature on LES is vast and continuously growing—the interested reader is referred to
References [23; 18; 25; 15] for reviews and discussions.
The formalism of decomposing �ow variables into resolved and unresolved scales of mo-

tion leads straightforwardly to �ltered equations that include on the right-hand side (RHS)
terms depending on the divergence of the anisotropic component of the so-called SGS stress
tensor, a combination of various products of unresolved and resolved components of the �ow
variables. In general, the entries of the SGS stress tensor are uncomputable and must be
expressed in terms of the resolved components of the �ow variables. The latter procedure
forms a SGS model—a key ingredient of a successful LES; cf. Reference [15]. In meteorol-
ogy, the most popular Smagorinsky SGS model postulates an SGS stress tensor proportional
to the rate of strain (of the resolved �ow) via a local eddy-viscosity coe�cient. The eddy
coe�cient itself depends on the magnitude of the local strain rate. Formal SGS models are
not necessarily simple, and when combined with non-orthogonal time-dependent geometries
(forming a base of mesh re�nement schemes) they become overly complicated and cumber-
some.
Historically, the development of SGS models for meteorological codes was not motivated by

physical principles of LES, but by inadequate stability of numerical solutions (viz., non-linear
instability problem; [38]). Consequently, the utility of SGS models is often appreciated not for
their sound representation of actual turbulence that might occur on the subgrid scales but rather
as a means of suppressing false computational oscillations. However, if non-linear instability
is of concern, there are simpler, more e�ective, and more universal means of preventing it (cf.
the paragraph concluding Smagorinsky’s [38] historical remarks). Numerical simulations of
turbulent �ows that abandon rigorous notions of LES and merely aim at explicitly computing
large coherent eddies resolvable on the grid are sometimes referred to as VLES (for very-
large-eddy simulations [27]).
Recently, a class of �nite di�erence methods—non-oscillatory forward-in-time (NFT)∗ —

have exhibited the remarkable property of representing LES=VLES without recourse to any

∗With ‘non-oscillatory’, we shall generously label all the non-linear techniques (often referred to as monotonicity
or shape-preserving, shock-capturing, or brie�y, monotone schemes; e.g. total variation diminishing, TVD, �ux-
corrected-transport, FCT, and various �ux-limited and sign-preserving schemes) that suppress=reduce=control numer-
ical oscillations characteristic of higher-order linear schemes. After Reference [52], ‘forward-in-time’ (FT) labels a
class of generalized one-step Lax–Wendro� type methods. Altogether, ‘NFT’ is meant to distinguish from classical
centred-in-time-and-space (CTS) linear methods, notorious for exhibiting spurious oscillations.
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explicit subgrid-scale model. In particular, Margolin et al. [22] demonstrated that a mesoscale
atmospheric code based on the non-oscillatory advection scheme MPDATA [48] can accurately
reproduce (i.e. in close agreement with �eld and laboratory data and the existing benchmark
computations) the dynamics of the convective planetary boundary layer. When an explicit
turbulence model was implemented, MPDATA did not add any unnecessary di�usion. Of
greater interest, when no explicit turbulence scheme was employed MPDATA itself appeared
to include an e�ective SGS model. Finally, with the explicit turbulence model but eddy
viscosity reduced by some factor, MPDATA added just enough dissipation. Taken together,
this documents the self-adaptive character of the NFT solver’s dissipative properties, which
appear to be physically realistic.
Several researchers have reported similar success, by simulating turbulent �ows in a vari-

ety of regimes while using only non-oscillatory advection schemes to model subgrid e�ects.
For instance, the use of non-oscillatory schemes as an implicit turbulence model has been
discussed in the context of free shear �ows [26], strongly compressible turbulence [29], and
the development of turbulence at Rayleigh–Taylor unstable interfaces [20]. At this point there
is no theory justifying this success. Since in each of the reported applications a di�erent
NFT algorithm has been used, their common ability to accurately simulate turbulent �ows
(as demonstrated by comparisons with data) indicates that the non-oscillatory property per se
(rather than details of any particular algorithm) is important. We elaborate on this throughout
this paper.
Our goal is to convince the reader about the utility of the NFT approach for VLES of

geophysical �ows, and we will present overwhelming evidence in support of this approach.
However, we do recognize that this approach is not a panacea, and in particular, that there
is still a need for explicit SGS models. In parallel to the reports which prize the perfor-
mance of non-oscillatory methods (as sole SGS models), there are critical works that point
out some de�ciencies. Moin and Kravchenko [24], and Brown et al. [4], document convin-
cingly inferior performance of dissipative upwind-biased methods in frictional (shear-driven)
turbulent boundary-layer �ow problems. In a way, this is not necessarily surprising. By
de�nition, frictional boundary layers are thin layers adjacent to a solid wall, where ef-
fects of viscosity are important regardless of how high the Reynolds number of the �ow
can be (see Section 5.7 in [3]). When viscosity becomes dominant, it is only natural to
expect solutions’ sensitivity to details of SGS models. In this paper, we shall focus on
�ows away from frictional boundary layers—a convenient scenario relevant to a broad class
of geophysical applications—and proceed with disregard for potential di�culties in near-
wall regions. The latter problems are the subject of intense research and, hopefully, an al-
ternative solution which combines the strengths of explicit and implicit SGS models will
appear shortly with great bene�t to universality, and simplicity of VLES for geophysical
�ows.
The paper is organized as follows. In the following section we list some general properties

of NFT schemes of relevance to simulating turbulent �ows. Then we summarize the NFT
formulation that we have found particularly useful in geophysical applications, but still in ab-
straction from any speci�c system of the equations of motion. Only after this, we shall describe
the anelastic model equations used in our studies, and outline some details of implementing our
NFT approach. Then we �nish with an example application: gravity-wave-breaking induced
small-scale turbulence in a deep atmosphere.
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2. SOME REMARKABLE PROPERTIES OF NFT SCHEMES

The basic equation underlying turbulent �ows is the homogeneous continuity equation
describing the transport of a non-di�usive scalar quantity. Elementary advection schemes for
this equation (such as classical donor-cell, one-step Lax–Wendro�, or CTS leapfrog; see Ref-
erences [35] or [30], for details) yield simple, compact forms for the resulting advective �uxes.
Modern NFT methods addressed in this paper yield complex �uxes that often require many
equations for their representation. Nevertheless, they produce superior results with regard to
stability and accuracy, and so are worth the extra e�ort involved.
NFT advection schemes possess enhanced computational stability because the total ‘energy’

(‘entropy’) of a sign-preserving solution is uniformly bounded in time [42]; see Appendix for
further discussion. For a su�ciently small time step �t, advection schemes can always be
designed which are sign-preserving for arbitrary �ows (e.g., [39–41])—thus non-oscillatory
schemes exhibit non-linear as well as linear stability. These results hold if the dependent
variable �eld  is of either constant or variable sign. Arguments can be further generalized
(over a single time step) to a transport equation with forcings and=or sources leading to the
conclusion that sign-preserving advection schemes o�er the means of controlling non-linear
stability in numerical models.
A numerical property of great importance to turbulence simulations is �ow topology—or

realizability. This means that  must be advected along non-intersecting numerical trajecto-
ries. This property is subtle as super�cially, intersecting trajectories may give the impression
of turbulent motions (see [31]). For a �ow to be realizable, the �ow Jacobian J ≡{@x=@xo},
with xo denoting the foot of the trajectory arriving at (x(xo; to); t), must be positive and
bounded, 0¡J¡∞ (see Chapter 2 in Reference [28], for a discussion). From the latter, and
the Lagrangian form of the continuity equation d =dt=0, it follows that  =  oJ−1 with
 o=  |(xo; to) [53]. One can thus argue that assuring sign-preserving advection of  , via ade-
quate limiting of the advecting �ow, amounts to assuring that the numerical trajectories do
not intersect. Another condition, su�cient for �ow realizability within �t, is L¡1, where
L≡�t‖@u=@x‖ is the ‘Lipschitz number’ [44]. Both topological constraints depend on mag-
nitudes of local velocity derivatives, and thus point out that limiting local derivatives of the
resolved �ow (without necessarily reducing the magnitude of �t) should improve �delity of
the simulations. Since such a limiting is also e�ected by �ltering small, poorly resolved ed-
dies on the grid—regardless of the formal theoretics underlying LES—SGS models act quite
similarly to the limiters of non-oscillatory schemes.
Non-oscillatory advection schemes are dissipative. In practice, this means that (i) they con-

tain both even and odd truncation-error terms in their Taylor series expansion (in contrast
to CTS schemes like the leapfrog method), and (ii) they tend to dissipate (rather than con-
serve) the quadratic integrals (‘energy’ or ‘entropy’) of the transported variable (in contrast
to CTS schemes like Arakawa-type methods [1]). By no means does dissipativity imply low
accuracy—although statements in this spirit do appear in the literature every once in a while.
Non-oscillatory algorithms are available for a number of existing advection schemes that take
into account �ow variability and multidimensionality, and typically o�er uniformly second-
order accurate solutions for arbitrary �ows. These algorithms are particularly attractive for
VLES modelling of geophysical �uids. The remarkable e�cacy (i.e. accuracy versus e�-
ciency) of the non-oscillatory methods has been argued in the literature for the last decade
(see Introduction). In order to substantiate such arguments as well as to show the
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Figure 1. LES (run I) and VLES (run E) of convective PBL.

‘dissipativity’ at work, here we highlight the results of LES vs. VLES and DNS vs. VLES
for two benchmark simulations of turbulent �ows using the NFT incompressible Boussinesq
model based on the MPDATA advection scheme [48].
Figure 1 highlights the simulations of convective planetary boundary layer (PBL) of

Margolin et al. [22]. The three curves shown in the �gure represent mean pro�les of the re-
solved heat �ux 〈�′w′〉 (normalized appropriately) from three di�erent simulations: the short-
dashed curve is from LES benchmark simulations of Schmidt and Schumann [36] using a
CTS model; the long-dashed curve is from LES simulations with MPDATA, and the solid
curve is for MPDATA VLES with no explicit subgrid-scale model. Circles represent �eld
and laboratory data. The comparability of all the results with the data is excellent (for other
characteristics of the �ow, see [22]). Without the VLES result, one might be tempted to argue
that the dissipativity of the employed NFT approach is negligibly small. However, the results
shown reveal a more interesting story.
A full appreciation of the results in Figure 1 intertwines with appreciating the mechanics

of non-oscillatory schemes. Such schemes are non-linear (even for linear problems) as they
employ coe�cients that depend on the transported variables. In other words, non-oscillatory
schemes are self-adaptive as they design themselves in the course of the simulation. Therefore,
in contrast to linear methods, di�erent realizations of the same turbulent �ow use di�erent
numerical approximations to the governing equations of motion. When the explicit SGS model
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Figure 2. DNS and VLES of the decaying turbulence.

is included (LES) the resolved �ow is su�ciently smooth, and the entire machinery assur-
ing non-oscillatory properties of the numerics is e�ectively turned o� (there is no need to
limit=adjust linear components of the scheme). In the absence of an explicit SGS model
(VLES) the non-oscillatory machinery adapts the numerics ‘smartly’ such as to assure so-
lutions that are apparently as smooth as those generated with physically-motivated explicit
SGS models. Insofar as the dissipativity per se of the NFT methods is concerned, there is no
simple scholastic quanti�cation, since the resulting transport scheme can be e�ectively either
non-dissipative or dissipative, depending upon the presence or absence, respectively, of an
explicit SGS model.
The second example highlights the results of DNS=VLES simulations of the decaying tur-

bulence of a homogeneous incompressible �uid in a triply-periodic cube—a canonical prob-
lem in turbulence studies. Due to the assumed homogeneity of the thermodynamics, and the
lack of near-wall e�ects, the focus of the problem is on the non-linearity of the convective
derivatives u∇u in the momentum equation, i.e. the ‘categorical imperative’ of the turbulence
per se. Our NFT simulations with MPDATA (and the non-oscillatory semi-Lagrangian option
of our model) follow precisely the 2563 pseudo-spectral simulations of Herring and Kerr [13].
Figure 2 displays the numerical results for the evolution of enstrophy for three values

of viscosity, �=0:0500, �=0:0125, and �=0 m2 s−1 (as indicated). Solid lines are for
MPDATA experiments and dashed lines for semi-Lagrangian experiments, whereas Herring–
Kerr results are marked with circles. Also shown is a theoretical estimate for inviscid �ow
(dotted lines)—based upon the elementary enstrophy relationship for 3D isotropic turbulence
and a phenomenological model for skewness (with free parameters evaluated by matching
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the numerical results at small time when viscous e�ects are negligible); see Chapter VI.7
in [19].
In the �gure, one striking message is the remarkable agreement of the NFT and the pseudo-

spectral results for DNS (�¿0). This level of agreement is maintained uniformly throughout
all �ow characteristics, including spectra (see [13], for discussions and physical insights). Tra-
ditionally, pseudo-spectral methods are prized for their accuracy and considered superior tools
for studying turbulent �ows. Since all convergent methods eventually become accurate when
the �ow is fully resolved, one may wonder whether the resolution employed is an overkill.
This is de�nitely not the case for �=0:0125 where the Kolmogorov scale is about one grid-
interval (Kerr, personal communication) and the dissipation of the energy is not well resolved.
Apparently, the NFT model employed is at least as accurate as the pseudo-spectral code. The
VLES result (�=0) exposes the true power of the NFT approach. Without viscous dissipation,
unlimited enstrophy growth is predicted; with a �nite enstrophy blowup time of t∼ 0:55 s.
With rapid enstrophy growth, the spectral calculations become computationally unstable and
must be terminated after ∼ 0:35 s [13]. Up to this time, the NFT, spectral, and theoretical
results agree closely. After the collapse of the spectral model, the NFT computations continue
but drop well below the theoretical result. This divergence is due to the �ow topology condi-
tion being enforced by the NFT scheme (e.g. an implicit SGS model develops). Essentially,
enstrophy has increased to the point where velocity gradients are so large that limiting of
local derivatives of the �ow has to be enforced for stability of the computations. Intriguingly,
Figure 2 indicates that the net e�ect of this limiting is that the NFT scheme results in an
e�ective viscosity (of ∼ 0:004 m2 s−1 for the Eulerian computation and approximately double
that for the NFT semi-Lagrangian computation). In a sense, NFT schemes may be thought
of as producing the sharpest possible (stable) LES result for an inviscid �ow for a given
computational resolution.

3. NFT METHODS FOR FLUIDS

In modelling atmospheric=oceanic �ows the governing equations can always be viewed in the
form of a generalized transport equation

@�∗ 
@�t

+ �∇ · (�∗ �v∗ )=�∗R (1)

where �∇ · ≡ (@=@ �x; @=@ �y; @=@ �z)· is de�ned as the divergence operator in a time variable,
curvilinear coordinate system; and  is an intensive dependent �uid variable, e.g. compo-
nent of speci�c momentum (viz. velocity component), potential temperature, water vapour
mixing ratio, speci�c salinity, etc. In Equation (1), the coe�cients �∗, �v∗, and R are as-
sumed to be known functions of the independent variables ( �x; �t). In anelastic-�ow applica-
tions addressed in this paper, �∗ ≡�b �G plays the role of a reference density multiplied by
the Jacobian of the transformation from a stationary, physical coordinate system x (such as
Cartesian) to the curvilinear system �x (such as terrain-following coordinates on a rotating
sphere); �v∗ ≡ (u∗; v∗; w∗)≡ d �x=d�t≡ �̇x is the contravariant velocity in the curvilinear system;
and R combines all forcings and=or sources. In general, both �v∗ and R are functionals of the
dependent variables (see Reference [48] for examples). With these de�nitions, Equation (1)
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is mathematically equivalent to the Langrangian evolution equation

d 
d�t
=R (2)

regardless of the assumed form of the mass continuity equation (i.e. compressible, incom-
pressible, Boussinesq, anelastic, etc.), with d=d�t= @=@�t + �x �∇ for the material derivative.
Our basic NFT approach for approximating either Equation (1) or (2) on a discrete mesh is

second-order-accurate in space and time. The two optional model algorithms, Eulerian [45] and
semi-Lagrangian [44], correspond to Equations (1) and (2). Either algorithm can be written
in the compact form

 n+1
i =LEi( ̃ ) + 0:5�tRn+1

i (3)

Here and throughout the remainder of this section, we drop the overbar for the transformed
time coordinate to simplify notation; all t′s are to be understood as �t′s. We denote  n+1

i as
the solution at the grid point ( �xi; t n+1);  ̃ ≡  n+0:5�tRn; and LE denotes either an advective
semi-Lagrangian or a �ux-form Eulerian NFT transport operator. In the Eulerian scheme, LE
integrates the homogeneous transport Equation (1), i.e. LE advects  ̃ using a fully second-
order-accurate multidimensional NFT advection scheme (cf. Reference [40]). In the semi-
Lagrangian algorithm, LE remaps transported �elds arriving at the grid points ( �xi; t) back to
the departure points of the �ow trajectories ( �xo( �xi; t n+1); t n). Interestingly, the Lagrangian LE
is also composed from NFT advection schemes. In contrast to the Eulerian case, however, it
exploits directionally split 1D NFT advection schemes. The theory underlying such a design
relies on elementary properties of di�erential forms [44; 43].† In technical terms, the semi-
Lagrangian LE advects  ̃ with a constant advective velocity on a local stencil in the vicinity
of the departure point. This advective velocity is really a normalized displacement of the
departure point to its nearest grid point, and can be di�erent for each arrival point ( �xi; t n+1)
in Equation (3). Because of the latter, the semi-Lagrangian LE operator is not conservative,
but thanks to the constancy of the local advective velocity, it is free of splitting errors. This
is particularly convenient, as it allows the construction of fully second-order-accurate NFT
�uid models based on constant-coe�cient 1D advection schemes.
Transporting the auxiliary �eld  ̃ (rather than the �uid variable alone) is important for the

accuracy and stability of FT approximations. In the semi-Lagrangian algorithm, transporting
 ̃ derives straightforwardly from the trapezoidal-rule approximation for the trajectory integral
of Equation (2)

 n+1
i =  o +

∫
T
Rd�≈  o + 0:5�t(Ro + Rn+1

i )≈ ( + 0:5�tR)o + 0:5�tRn+1
i (4)

where the subscript ‘o’ is a shorthand for the value at the departure point ( �xo( �xi; t n+1); t n),
and the second approximate equality accounts for eventual non-linearity of the LE remapping
operator.

†An alternative argument employs the zeroth-order Taylor series expansion with higher-order accurate approximation
of the �rst remainder that takes an integral form of the advection equation [43].
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In the Eulerian algorithm, transporting  ̃ is a consequence of correcting for the �rst-order
truncation error proportional to the divergence of the advective �ux of R. To show this, we
�rst rewrite Equation (1) in a simpler form

@�∗ 
@t

+ �∇ · (ũ )=�∗R (5)

where ũ≡�∗ �v∗=�b �G �̇x. We assume a temporal discretization of Equation (5) in the form

�∗n+1 n+1 − �∗n n

�t
+ �∇ · (ũn+1=2 n)=�∗n+1=2Rn+1=2 (6)

where n + 1=2 superscript denotes an O(�t2) accurate approximation for a �eld value at
t= t n + 0:5�t, yet to be speci�ed. The lack of temporal centring of the transported �eld
 in the second term on the left-hand side (LHS) of Equation (6) is the de�ning property
distinguishing FT schemes from CTS methods. With a straightforward (centred) higher-order
discretization of the spatial derivatives, the di�erencing in Equation (6) leads typically to com-
putationally unstable schemes; for example, consider the classical Euler-forward discretization
for the constant coe�cient, homogeneous case of Equation (6).
In order to arrive at a stable, fully second-order-accurate, and robust NFT algorithm, we pro-

ceed in the spirit of the one-step Lax–Wendro� schemes [17]: �rst, we evaluate the complete
O(�t) truncation error (due to uncentred time di�erencing) in terms of spatial di�erences;
then, to compensate for this error, we add appropriate terms on the RHS of Equation (6)
[48]. These terms are of two distinct types. The �rst is due solely to advection and must
be compensated, by design, in any second-order-accurate FT advection scheme. The second
term is related to implementation of the FT schemes in inhomogeneous advection problems. It
appears in those ‘naive’ approximations to Equation (1) that simply combine an FT advection
scheme for homogeneous transport with an O(�t2) approximation of RHSn+1=2. Ignoring this
error leads to spurious ∼O(�t) sinks=sources of ‘energy’  2 and, eventually, to non-linear
instability (Appendix A in Reference [45]). Compensating this error to O(�t2) only requires
subtracting a �rst-order-accurate approximation from the RHS of Equation (6).
The basic MPDATA algorithm is based upon a time-independent coe�cient �∗. For time

variable �∗, it is possible to generalize the algorithm and subtract additional error correction
terms from the RHS of Equation (6) so as to still maintain an O(�t2) approximation [39]
[14]. However there is an easier and more elegant alternative that works for any second-order-
accurate time-independent-coe�cient NFT �ux-form advection scheme for a homogeneous
Equation (6). Assuming a trapezoidal-rule approximation on the RHS of Equation (6)

�∗n+1=2Rn+1=2 = 0:5(�∗nRn + �∗n+1Rn+1) (7)

and rearranging the homogeneous time-independent coe�cient version of Equation (6) into
the form

 n+1
i =Ai( n; ũn+1=2; �∗)≡  n

i + �∗−1�iF( n; ũn+1=2; �∗) (8)

where �iF symbolizes the di�erence of local advective �uxes that de�ne the NFT scheme at
hand then, the algorithm

 n+1
i =

�∗n

�∗n+1Ai( n + 0:5�tRn; ũn+1=2; �∗n) + 0:5�tRn+1
i (9)
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approximates the solution to governing Equation (5) to the second-order accuracy. Identifying
the �rst term on the RHS of Equation (9) with the LE operator on the RHS of Equation (3)
closes the derivation of an Eulerian option of the NFT algorithm.
The congruence of the semi-Lagrangian and Eulerian options of the NFT approach in Equa-

tion (3) is convenient for applications. It allows for a fairly simple yet e�ective design of �uid
models with optional use of either algorithm selectable by the user. Both options have merits,
and in fact simulating the same physical problem with two di�erent numerical algorithms helps
to assess the signi�cance of the truncation error [49]. Semi-Lagrangian advection schemes are
not subject to the Courant–Friedrichs–Lewy (CFL) stability condition, thereby allowing for
large-time-step integrations for smooth �ows with small values of Lipschitz number L. But,
because of the topological concerns, the unconditional stability of semi-Lagrangian advec-
tion o�ers little advantage for simulating turbulent �ows; cf. References [44; 2; 31]. Since
the �ux-form of the Eulerian schemes assures local conservation and accurate representation
of Neumann boundary conditions [6], it leads, ultimately, to more suitable NFT schemes for
simulating high-Reynolds-number �ows. In general, however, the overall accuracy of the two
options is problem-dependent [47], and there is no simple assessment valid throughout the
entire range of geophysical applications. A hint of distinct behavioural errors [35] may be
seen in Figure 2, where VLES simulations of the decaying turbulence result in larger values
of entrophy for the Eulerian option of the model, while resolved DNS simulations yield the
same values for both options.

4. AN ANELASTIC FLUID MODEL

4.1. Motivation

Up to now, we have carried out our discussion in abstraction from any particular system of
�uid equations. While the NFT methods outlined in preceding sections can be directly applied
to explicit integrations of a fully compressible Euler system,† because of the enormous span of
the spatial and temporal scales important in geophysical �uids, explicit integrations of generic
compressible equations are impractical (viz. prohibitively expensive) for most applications.
As a result, meteorological models utilize a variety of analytic=numerical approximations to
the �uid equations (hydrostatic, elastic, anelastic, Boussinesq, and so on; and evince many
split-explicit or semi-implicit methods) for their integrations.
For research studies of all-scale turbulent geophysical �uids, we have found the anelastic

non-hydrostatic system optimal so far. The anelastic equations may be viewed as combin-
ing two distinct approximations in the compressible Euler equations: a Boussinesq type lin-
earization of the pressure gradient forces and mass �uxes in momentum and mass continuity
equations, respectively; and the anelasticity per se equivalent to taking the limit of an in�nite
speed of sound. Although the anelastic equations were proven accurate for modelling weakly-
strati�ed deep �uids, our recent results [49] document that the anelastic equations can capture
adequately a broad range of planetary �ows (i.e. shallow strati�ed �uids) while requiring
relatively minor overhead due to the non-hydrostatic formulation. The adequacy of the anelas-
tic approximation has important practical consequences. The Boussinesq linearization inherent

†See Reference [45] for a hydraulic analogy.
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in the anelastic system greatly simpli�es the task of designing accurate, �exible, and computa-
tionally e�cient ‘all-scale-research’ models for meteorological circulations. This is especially
important within the class of NFT models, where two-time-level self-adaptive non-linear nu-
merics leads inevitably to di�cult non-linear elliptic problems for implicit discretizations of
fully compressible Euler equations.

4.2. Analytic formulation

A unique feature of our mathematical model is that it has the �exibility to solve the governing
equations in a variety of domains. The capability for this �exibility comes from a generalized
coordinate transformation, or homeomorphism, that maps the physical domain (x; t) where
x≡ (x; y; z)—into a transformed, computational domain ( �x; �t) where �x≡ (�x; �y; �z). Thus the
physical and transformed spaces share the same topological properties, such as connectivity.
The physical space must be Riemannian [50] so that the fundamental (or distance) metric
is de�ned (which does not have to be positive de�nite in anticipation of relativistic applica-
tions). An added, extremely powerful capability that is enabled by the mapping technique is
Dynamic Grid Adaptation (DGA). DGA allows the computational grid to deform so as to
follow features of interest in an evolving solution. The DGA capability is enabled by moving
the numerical grid along coordinate isolines. The widespread use of coordinate mapping for
grid adaptation in the engineering community dates back to a seminal paper by Thompson
et al. [51] and is approaching a status as a mature sub�eld in computational �uid dynamics.
Although the use of coordinate mapping for grid adaptation also dates back to nearly the
same time in the meteorological community [10], it has not been as widely embraced; recent
works include References [8; 31; 9; 34; 14].

Transformation overview. The three dimensional, time variable mapping is given by

(�t; �x; �y; �z)= (t; E(t; x; y); D(t; x; y); C(t; x; y; z)) (10)

Note that in particular ( �x; �y) do not depend upon the vertical coordinate z. This keeps vertical
columns vertical and considerably simpli�es the number of metric terms that appear.

Generalized transport equations. The anelastic model equations for moist convection [21]
form the basis of our model, which are then further modi�ed by subtracting o� a speci�ed
environmental state. The resulting ‘perturbation’ equations (we actually end up solving for full
velocity, perturbation potential temperature, and ultimately, perturbation pressure) in physical
space are transformed utilizing the mapping functions de�ned in Equation (10). Following the
basic form already laid out in Equation (1), the resulting continuity, momentum, and potential
temperature equations (for extensions to moist processes, see Reference [12]) may be
written as

�∇ · (�∗ �vs)=0 (11)

dv
d�t
= Fp + g�′=�b + Foth (12)

d�′

d�t
= F� − vs · �∇�e (13)
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where the jth component (j=1; 2; 3 corresponding to the �x; �y; �z components, respectively) of
the pressure gradient force is given by

Fj
p =

√
gjj

(
E;xj

@�′

@ �x
+D;xj

@�′

@ �y
+ C;xj

@�′

@ �z

)
(14)

Equations (11)–(13) need to be studied carefully—while they look more or less like the stan-
dard forms there are a few subtleties involved. The di�erential operators �∇ and d=d�t, and the
contravariant velocity v∗ have already been de�ned in Section 3. Appearing in the continuity
(11) and potential temperature (13) equations is the solenoidal velocity, vs ≡ v∗ − @ �x=@t, so
named because of the form continuity Equation (11) takes with it. Note that Equation (11)
is a completely general result for the transformation (10) provided that: (i) �b=�b(x), i.e.
the reference density �eld is time-independent; and (ii) the physical coordinate system x is
also time-independent (Cartesian, cylindrical, spherical, oblate spheroidal, and so on, would
all be acceptable choices for the physical system). A proof for the form Equation (11) is
outlined in the Appendix of Reference [34]. In the momentum equation, it is the physical
velocity v, de�ned in the physical coordinates x, that is advected by the material derivative.
Thus Equations (11)–(13) use three distinct sets of velocities. Note that in general, only the
physical velocity v will have the dimension of velocity (e.g., units of ms−1). A distinct phys-
ical velocity, �v, also exists for the transformed coordinate system �x. Using tensor notation,
it is given by vj= v∗j

√
gjj where summation is not implied on the indices. Now assuming

the usual summation convention, the contravariant velocity is written as v∗j=(@xj=@xk)v∗k

(with k=0; 1; 2; 3—k=0 referring to time [34]), and the diagonal elements of the metric
tensor of the transformed coordinates are gjj= gpq(@xp=@xj)(@xq=@xj). The metric and conju-
gate metric tensors for the physical coordinate system (which need not be Cartesian) are gpq

and gpq, respectively. The Jacobian of the mapping into the transformed coordinate system
is �G= |gpq|1=2. The physical vj and contravariant v∗j velocity thus di�er by the scale factor√

gjj. The physical velocities �v and v are identical, but their components are aligned with
di�erent coordinate systems ( �x and x, respectively). Our experience has been that it is easier
to work with v and hence we have excluded �v from the algorithm by design.
Forcings in the momentum Equation (12) due to perturbations from the environmental

state, such as Coriolis and centrifugal forces due to rotations and Christo�el symbols, and
frictional=stress terms such as damping (e.g. gravity-wave absorbers in vicinity of open bound-
aries) and=or SGS modelling are all included in the Foth term. g≡ (0; 0; g) is the acceleration
of gravity. The F� term in the potential temperature equation corresponds to any thermal
forcing—such as radiation, damping and=or SGS modelling terms. Subscripts ‘b’ and ‘e’ refer
to the basic and environmental states, respectively—references which are particularly suitable
for geophysical �ows. Finally, �′= �− �e, �′=(p−pe)=�b, and subscripts ‘; xj’ appearing in
Equation (14) denote partial di�erentiation.

Reference states. The basic state directly associated with the anelastic approximation is in
hydrostatic balance, and: it is (i) steady; (ii) it has the �ow Vb=(ub(z); 0; 0); (iii) it satis�es
the equation of state, pb=�bRTb; and (iv) it has potential temperature, pressure and density
�elds �b(z)= �ref exp[(z − zref )=H�], pb(z), and �b(z), respectively. The basic state satis�es
only the pressure gradient and buoyancy forcings. Subtraction of the basic state equations from
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the full form of the compressible �uid equations, together with the Boussinesq linearization
of the pressure gradient forces and mass �uxes, leads to the anelastic system, which has the
merit of �ltering out sound waves while allowing thermal compressibility e�ects [21]. Since
the coordinate mapping is time-variable, the transient term must be retained in the contravariant
form of anelastic continuity [31; 34]—motivating the use of the solenoidal velocity in
Equation (11).
The environmental state is a solution of the anelastic system that minimally satis�es geo-

strophic balance, e.g. terms arising from Coriolis and centrifugal forces due to rotation and
Christo�el symbols. We assume this state (i) is steady, (ii) has the �ow Ve=(ue(y; z); ve(y; z);
0), (iii) satis�es the equation of state, and (iv) has potential temperature, pressure, and density
�elds �e(y; z), pe(y; z), and �e(y; z), respectively. In addition to the geostrophic terms, the
environmental state may satisfy a thermal forcing term that perturbs the potential temperature
from its basic state value.

4.3. Numerical implementation

Equations (12) and (13) are solved implicitly for the physical velocity, v, and potential tem-
perature perturbation, �′, respectively; using Equation (3) as given in Section 3. Coriolis and
centrifugal accelerations arising from rotation and Christo�el symbols, condensation, pressure
gradients, and gravity-wave absorbers are all treated implicitly in the Rn+1

i term of Equa-
tion (3). SGS terms and slow phase-change tendencies (such as rain formation or evaporation
[12]) are treated explicitly. The implicitness of the gravity-wave absorbers and the potential
temperature enhance stability and accuracy. The implicitness of the pressure gradient forces
is an essential feature as it enables the projection of the preliminary values of LE( ̃ ) onto
solutions of the continuity Equation (11)—see Reference [5]. To make this projection, the
system of simultaneous equations resulting from Equation (3) are algebraically inverted to
construct expressions for the solenoidal velocity components. These components are substi-
tuted into Equation (11) producing an elliptic equation for pressure. This elliptic equation is
solved (subject to appropriate boundary conditions) using the generalized conjugate-residual
approach—a preconditioned non-symmetric Krylov solver (see References [46; 47], and the
Appendix of Reference [49] for further details). Updated values of the physical velocity are
then computed from the solenoidal velocities using the relation vj=√gjj(@xj=@xp)vsp where
p=1; 2; 3 (summation is implied in p index but not j). Finally, updated contravariant velocity
components required for the material derivative appearing in Equation (12) are constructed
from the solenoidal velocity according to v∗j= vsj + xj

; t .

5. GRAVITY-WAVE INDUCED TURBULENCE AT MESOPAUSE ALTITUDES

This problem is of interest for at least two reasons. First, the middle atmosphere is known to
be far from radiative equilibrium at mesopause altitudes and wave forcing is the main factor
behind this phenomenon [11]. Determination of the extent to which gravity wave breaking
is responsible for this non-equilibrium has great relevance to a complete understanding of
the wave forcing and its parameterization. Second, numerical simulation of turbulence is of
considerable theoretical interest. The wave breaking in this study generated a highly inho-
mogeneous, anisotropic turbulence. It was not initialized according to any a priori turbu-
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lence model nor constrained by domain size (which can limit wave–wave interactions, see
Reference [37]). Instead, the turbulence developed from a very smooth linear wave�eld in
accord with the physics of a wave packet propagating into a very deep model atmosphere (of
over 16 density scale heights—corresponding to a density variation from the bottom to the
top of over 107 to one).

5.1. Model setup

This experiment was run using the semi-Lagrangian option of the model in a massively par-
allel mode on a 512 processor Cray T3E (see Reference [34]). It simulated the evolution
of an internal gravity wave packet generated by a narrow, 2D squall line at tropopause lev-
els (∼ 15 km altitude) and its subsequent breaking near the mesopause (∼ 85 km altitude)
using a mesoscale sized, Cartesian physical domain. We used a spatio-temporal Gaussian
de�ection of the lower domain boundary (streamline) as a proxy for the squall line distur-
bance. The transformed vertical coordinate was prescribed as the time variable generaliza-
tion [31] of terrain following coordinates [10]—�z≡C(t; x; y; z)=H (z − zs)=(H − zs) where
zs ≡ zs(t; x; y)=A exp[−((x − xref + cxt)=�x)2] exp[−((t − tref )=�t)2]. The values of the various
parameters were: A=200 m, xref =−30 km, cx=7 ms−1, �x=2 km, tref =2 h, and �t =1 h
[31]. Although the horizontal coordinates were not stretched, this test case clearly illustrates
the time variable coordinate stretching capability that is inherent in the model.
The basic state (the environmental state was set identically) was one of uniform zonal wind

(ub=−32 ms−1), stability (with Brunt–V�ais�all�a frequency N =0:02 s−1), and density scale
height (e.g. �b(z)=�ref exp(−(z − zref )=H�) with H�=6:63 km). These conditions initially
favour the development of a 2D wave�eld that is monochromatic, quasi-stationary, and has
near unity aspect ratio. Each of these characteristics is due to linear wave dispersion. A
few Brunt–V�ais�all�a periods after maximum forcing, this wave�eld undergoes a 2D primary
(convective) instability [31].
The computational grid consisted of 544× 80× 291 (zonal× spanwise× vertical) points with

a resolution of 380 m:§ To save computer resources, the problem was executed in 2D on a
544× 1× 291 grid with a timestep of �t=5:0s until 120 minutes of the physical time. At 120
minutes, the 3D domain was created by repeating the solution in the spanwise direction y,
and seeding the buoyancy �eld with a small amplitude (¡1% of the basic state) white noise.
The time chosen for 3D seeding was carefully selected based upon data generated with earlier
2D [31] and 3D [32] experiments. Further computations continued in 5 minute portions of
physical time using a timestep of �t=2:5 s. The run was terminated at 180 minutes because
at this point breaking had consumed the zonal extent of the domain. The lateral zonal and
spanwise boundaries were periodic with lateral zonal sponges.
A specially tuned vertical sponge was employed, such that it approximated the e�ects of at-

mospheric viscosity for waves resulting from the primary instability. Explicit SGS dissipation
was not employed in this simulation. Instead, energy removal at the grid scale was e�ected
with the monotonicity option of the semi-Lagrangian interpolator. As discussed in Section 2,
this option invokes a topological constraint whereby no two streamtubes are allowed to inter-
sect. Interestingly, this �ow realizability condition was observed to be equivalent to a second

§A truncation error study reported in Reference [31] for the 2D primary instability indicates that 625 m resolution
is adequate to capture the correct morphological development in wavebreaking.
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Figure 3. Results from the wavebreaking experiment: contour density plot of ln(�) in vertical xz (zonal)
plane at spanwise location y=0 km at t=155 minutes showing region of vigorously breaking waves.

law constraint—the energy removal at the grid scale occurred at just the rate needed to avoid
local negative entropy production [31] (which was easily monitored by observing the evolu-
tion of the � �eld). Atmospheric viscosity (which varies approximately as �−1) is su�ciently
large near the domain top that the Kolmogorov microscale was the same order of magnitude
as the grid size at the initial altitude of breaking and the simulation in this upper region was
e�ectively DNS. Well below this altitude, however, atmospheric viscosity is many orders of
magnitudes smaller and in this region the simulation should be considered VLES.

5.2. Results

Some idea of the inhomogeneity of the wave�eld can be gleaned from Figures 3 and 4,
which show contour density plots of the potential temperature (�) �eld. The vertical plane of
Figure 3 is parallel to the zonal �ow, whereas the vertical plane of Figure 4 is perpendicular
to the zonal �ow. In Figure 3 the wave�eld is clearly seen to be inhomogeneous in both
the vertical and zonal (left to right) directions, whereas from Figure 4 the wave�eld can be
observed to be homogeneous in the spanwise direction (left to right). Note that the complete
altitude range 156z6125km is not shown in these �gures; the regions above and below that
shown are very smooth and characterized by almost constant strati�cation. The anisotropy and
evolution of the turbulence were assessed by examining (i) velocity derivative skewness [33],
and (ii) 1D and 2D energy spectra computed from � �elds;¶ see [34] for details regarding
the computations of the spectra.

¶Approximate equipartition occurs even during wave breaking [32].
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Figure 4. Contour density plot of ln(�) in vertical yz (spanwise) plane at zonal location x=−35 km at
t=155 minutes showing region of vigorously breaking waves (same contour interval as in Figure 3).

Figure 5 shows the evolution of the zonal energy spectra. At 125 minutes energy is concen-
trated in a fundamental mode at k=0:40km−1 (ln(k)=−0:90), corresponding to �x=15:5km.
At k=0:80km−1 (ln(k)=−0:23) a much weaker second harmonic—a harbinger of the primary
convective instability that is about to occur—may be seen. The very sharp drop o� between
the fundamental and second harmonic is due to an evanescent wave limit at k=0:62km−1. At
later times wave dispersion causes the fundamental to broaden and peak at lower wavenum-
bers (longer waves are slower and take more time to propagate upwards—see Reference [31].
With the onset of vigorous wave overturning (∼ 140 minutes), a buoyancy subrange [54] with
a slope of −3 appears just upscale of the fundamental. Until this primary instability occurs,
there is negligible energy at the highest wavenumbers. With the onset of a secondary (3D)
instability, a tendency towards a −5=3 slope can be seen. The critical buoyancy wavenum-
ber (Ozmidov scale) that separates the two regimes decreases from kb=4:0 to 1:8 km

−1 as t
increases from 140 to 180 minutes, respectively. This compares favourably with earlier results
on a Cray J90 (at 625 m resolution) which yielded kb=2:1 km

−1 at 150 minutes [32]. The
experimental value of kb may also be compared with the scaling result, kb ∼N 3=�d ∼ 1:6km−1

[54], where �d is the turbulence dissipation rate. Finally Figure 5 shows another −5=3 power
law regime at the lowest wavenumbers at earlier times (125 to 145 minutes). This is con-
sistent with a 2D reversed energy cascade that is transferring energy into the zonal mean
�elds [16]. The Eliassen–Palm �ux divergence has its maximum value precisely in this time
interval, of order 0:02ms−1, at breaking altitudes. After 150 minutes, the energy spectra �atten
out at the lowest wavenumbers. At this point wave breaking has disrupted the linear wave
�eld su�ciently that it lacks the larger scale coherence needed to e�ectively modify the zonal
average state.
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Figure 5. Time evolution of zonal spectral energy at 100 km altitude (straight
dashed lines have slopes of −5=3 and −3).

Vertical spectra (not shown) show very similar evolutionary tendencies, with the only
signi�cant di�erence being a lack of the −5=3 power law regime at the lowest wavenumbers.
Spanwise energy spectra (not shown) show very di�erent evolutionary tendencies, however.
The spectrum at 125 minutes is quite �at and 15 orders of magnitude below the fundamental
of the zonal spectra. Growth of spanwise energy is negligible for the �rst 10–15 minutes after
the 3D seeding. In the next 5–10 minutes spanwise spectral energy explodes as the secondary
instability undergoes a period of exponential growth. An inertial subrange, characterized by a
−5=3 power law appears at the highest wavenumbers. As t continues to increase, this subrange
expands to lower wavenumbers, until at 180 minutes, most of the spectrum lies within it.

6. REMARKS

LES models and their attendant SGS schemes have become widely accepted as perhaps the
best way to model turbulent �ows with so many degrees of freedom that they are hopelessly
beyond the possibility of DNS—a usage in marked contrast to their original application for
removal of non-linear instability. The need to express the SGS terms as functions of the
resolved eddy �eld makes the closure problem for SGS schemes mathematically not well
posed (see Chapter XII.2.2 in Reference [19]), and there is no rigorous theory at present for
constructing closures of the three-dimensional Navier–Stokes equations [15]. One way out of
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this conundrum is to make certain assumptions (such as isotropy) about the nature of the �ne
scale turbulence being modelled by the SGS scheme.
Our gravity wave simulations (Section 5) clearly show that correct, a priori, assumptions

about the nature of a geophysical turbulence can be di�cult to make. In our example, the
use of a standard assumption like isotropy could be detrimental as (i) the �ow is strongly
non-stationary, (ii) inhomogeneous, and (iii) shows both upscale and downscale energy �ow.
Regions of isotropic turbulence do exist, but they are complicated functions of spatial position
and time.
An alternative to the SGS closure conundrum is to recognize that the SGS model is, in

practice, a way to e�ect numerical stability. No attempt is made to determine what kind of
information may ‘lie’ unresolved at the sub-grid scales. If an inverse cascade is not su�ciently
resolved, it will not appear in the simulation. This is the idea behind VLES, and it immediately
shifts the goals from those of developing �ne scale turbulence models to those of e�ecting
stability as sharply as possible (i.e. with minimum dissipative impact on the computation).
This may appear to be a bit of a paradigm shift—from a physical viewpoint (for conventional
LES models) to a mathematical=computational one (for VLES). But our development shows
that sharp requirements for stability inevitably appear based in physics (see the discussion on
�ow topology and Lipschitz-number, L, in Section 2; and the negative entropy generation
argument from the gravity wave results in Section 5.1).
In inviscid or almost inviscid applications, these NFT schemes develop an implicit SGS

model that applies the minimum dissipation needed to keep the computation stable. In non-
stationary and=or inhomogeneous applications, the implicit SGS model ‘self-adapts’ to apply
the dissipation smartly, only when and where it is needed. In conclusion, the NFT methods
outlined and applied in this study can provide competitive (and in our examples superior)
alternatives to standard LES methods, when used in the spirit of VLES.

APPENDIX A

In order to illustrate the enhanced computational stability of NFT advection schemes (sign-
preserving, at least), consider a homogeneous continuity equation

@ 
@t
+

M∑
I=1

@
@xI ( uI)=0 (15)

where  (x; t) is a constant-sign scalar �eld, and uI is the I th component of an arbitrary
solenoidal �ow.‖ A corresponding �ux-form advection algorithm can be compactly written as

 n+1
i =  n

i −
M∑
I=1
(FI
i+1=2eI − FI

i−1=2eI ) (16)

where FI
i+1=2eI�X I is an approximation to the I component of the integrated (over time step

�t) advective �ux  uI , evaluated at i+1=2eI position on the grid; eI denotes the unit vector

‖Here, we assume a constant �uid density merely for simplicity in the argument; extensions to variable densities
(and=or geometries) follow the development in Section 3 of this paper.
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in the I direction. For simplicity, assume that both analytic and numerical �uxes vanish at the
boundaries of a computational domain. Then, the conservation form of Equation (16) implies

∀n∑
i
 n
i =

∑
i
 0i (17)

Since the scheme preserves the sign of the transported quantity by assumption, Equation (17)
is equivalent to

∀n∑
i
| n
i |=

∑
i
| 0i | (18)

Recalling that
∑ | |¿(∑( )2)1=2, Equation (18) implies that

∀n∑
i
( n
i )
26

(∑
i
| 0i |

)2
≡B (19)

In other words, total ‘energy’ of the sign-preserving solution is uniformly bounded in time,
which is to say that the sign-preserving solution is computationally stable.
The simplicity of the result in Equation (19) is a direct consequence of the assumption that

 is of a constant sign. For variable-sign �elds, a similar result may be obtained by noting that
any  may be uniquely decomposed into the non-positive and non-negative part,  =[ ]+ +
[ ]− with [ ]+≡ max(0;  ) and [ ]− ≡ min(0;  ). Since Equation (15) is equivalent to the
Lagrangian form

d 
dt
=0 (20)

(where d=dt denotes the material derivative) and since [ ]+ and [ ]− have disjoined supports
along a �ow trajectory, Equation (20) implies

d[ ]+

dt
=0; and

d[ ]−

dt
=0 (21)

whereupon both [ ]+ and [ ]− must satisfy Equation (15). Applying a sign-preserving
advection scheme to both parts ensures uniform boundedness of both [ ]+ and [ ]−, and
consequently of their sum.
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